Design of decentralised adaptive sliding mode controllers for large-scale systems with mismatched perturbations

نویسندگان

  • Chih-Chiang Cheng
  • Yaote Chang
چکیده

Based on the Lyapunov stability theorem, a methodology for designing a decentralised adaptive sliding mode control scheme is proposed in this paper. This scheme is implemented for a class of large-scale systems with both matched and mismatched perturbations. The perturbations and the interconnection terms are assumed to be norm bounded under certain mild conditions. The decentralised sliding surfaces with adaptive mechanisms embedded are specially designed for each subsystem, so that when each subsystem enters the sliding mode, the mismatched perturbations and the effects of interconnections can be effectively overcome and achieve asymptotic stability. The decentralised controller with embedded adaptive mechanisms is capable of driving the controlled state trajectories into the designated sliding surface in finite time. This is also achieved without the knowledge of upper bounds of the perturbations except those of the uncertainties in the input channels. A numerical example is included to demonstrate the feasibility of the proposed control scheme.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Design of Sliding Mode Controllers for Mismatched Uncertain Systems with Unmeasurable States to Achieve Asymptotic Stability

Based on the Lyapunov stability theorem, a sliding mode controller is proposed in this paper for a class of uncertainmulti-inputmulti-output (MIMO) nonlinear systems to solve regulation problems. The perturbed plant contains partly unmeasurable states and unknown mismatched and matched perturbations. By utilizing the designed auxiliary dynamic equations for state estimation, the proposed slidin...

متن کامل

A Novel Robust Adaptive Trajectory Tracking in Robot Manipulators

In this paper, a novel adaptive sliding mode control for rigid robot manipulators is proposed. In the proposed system, since there may exist explicit unknown parameters and perturbations, a Lyapunov based approach is presented to increase system robustness, even in presence of arbitrarily large (but not infinite) discontinuous perturbations. To control and track the robot, a continuous controll...

متن کامل

An adaptive modified fuzzy-sliding mode longitudinal control design and simulation for vehicles equipped with ABS system

In order to improve the safety and longitudinal stability of a vehicle equipped with standard ABS system, this paper, analyzes the basic principles of vehicles stability and proposes a control strategy based on fuzzy adaptive control which will adjust PID gain parameters, using genetic algorithm. A linear three-degree-of-freedom (DOF) vehicle model was set up in Simulink and the stability test ...

متن کامل

Indirect Adaptive Interval Type-2 Fuzzy PI Sliding Mode Control for a Class of Uncertain Nonlinear Systems

Controller design remains an elusive and challenging problem foruncertain nonlinear dynamics. Interval type-2 fuzzy logic systems (IT2FLS) incomparison with type-1 fuzzy logic systems claim to effectively handle systemuncertainties especially in the presence of disturbances and noises, but lack aformal mechanism to guarantee performance. In contrast, adaptive sliding modecontrol (ASMC) provides...

متن کامل

A multitask sliding mode control for mismatched uncertain large-scale systems

A new sliding mode control (SMC) approach, output variables only, single phase only and chattering phenomenon free, is presented for a class of mismatched uncertain large-scale systems. For a new multitask SMC, it is not required that the system states are available. Moreover, the sliding function in this study just depends on output variables. Using an exponential type� sliding surface, the sy...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Int. J. Control

دوره 81  شماره 

صفحات  -

تاریخ انتشار 2008